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LUBRICATION OF SLIDING AND ROLLING ELEMENT 

ELECTRICAL CONTACTS I N  VACUUM 

by John Przybys zewski 

L e w i s  Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio 

ABSTRACT 

Sl id ing  e l e c t r i c a l  contact problems i n  vacuum, and recent experi- 

ments i n  t h i s  f i e l d  a r e  reviewed i n  regard t o  t h e  lubr icants  used. A t -  

t e n t i o n  i s  given t o  t h e  re la t ionship  between surface contamination and 

t h e  wear of graphi te .  Organic lubr ica t ion  i s  reviewed and it i s  seen 

as an undesirable method of lubr ica t ing  e l e c t r i c a l  contacts on the  

bas i s  of t h e  f r i c t i o n  polymer data  examined. Brief conclusions are 

drawn regarding t h e  performance of the various lubr icants  on t he  basis 

of t h e  experimental evidence. Thin, meta l l ic  f i lms a re  seen as a 

promising method of contact lubr ica t ion ,  and severa l  excel lent  methods 

of deposi t ing these  films are presented. 

TM X-52382 
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INTRODUCTION 

Some of t h e  major problem areas f o r  advanced spacecraf t  mecha- 

nisms a re  those of f r i c t i o n ,  wear, and e l e c t r i c a l  noise  which a re  

encountered i n  t h e  operation of s l i d ing  e l e c t r i c a l  contacts  t h a t  must 

be exposed t o  t h e  high vacuum, rad ia t ion ,  and temperature extremes of 

space. The s l i d i n g  e l e c t r i c a l  contacts associated with spacecraf t  

mechanisms, are required t o  operate r e l i a b l y ,  with low noise  and low 

contact r e s i s t ance ,  f o r  extended periods of t i m e  i n  a space environ- 

ment. 

operation i s  generally based on those mater ia ls  which are known t o  

work we l l  i n  t h e  e a r t h ' s  atmosphere. Under t h i s  condition, t h e  sur- 

faces  of contact mater ia ls  a r e  covered by films of adsorbed o r  

chemisorbed gases , water, sulphates , carbonates, and o ther  contam- 

inan t s .  Experiments i n  t h e  f r i c t i o n  and w e a r  f i e l d  have es tab l i shed  

t h a t  these  surface fi lms, normally present on t h e  surfaces  of materi- 

als, play an important r o l e  i n  t h e  behavior of mater ia ls  during t h e  

process of s l i d i n g  (I). 

environment, these bene f i c i a l  f i lms rnw be l o s t  by w e a r ,  desorption, or 

evaporation. 

t h e i r  reformation i s  absent i n  a vacuum. The absence of surface films 

w i l l  markedly change the  behavior of materials employed i n  s l i d i n g  

e l e c t r i c a l  contacts (e .g . ,  vacuum cold welding may occur) .  

conditions,  t h e  contact surface de te r iora tes  rapidly.  This r e s u l t s  i n  

excessive wear r a t e s ,  a r i s e  i n  t h e  coef f ic ien t  of f r i c t i o n ,  l a rge  

contact res i s tance  f luc tua t ions ,  a n d  i n to l e rab le  e l e c t r i c a l  noise  l eve l s  

The se l ec t ion  of mater ia ls  f o r  t h i s  type of e l e c t r i c a l  contact 

When materials a re  operated i n  a v a c u u  

They cannot reform because t h e  substance necessary f o r  

Under these  



3 

For operation outs ide of t h e  ea r th ' s  atmosphere, some form of 

e x t r i n s i c  l ub r i ca t ion  i s  needed t o  reduce f r i c t i o n ,  wear, and elec-  

t r i c a l  noise  t o  reasonable values.  

without g rea t ly  dis turbing t h e  basic  function of t h e  s l i d i n g  e l e c t r i -  

c a l  contact.  

i s  fu r the r  complicated by environmental f ac to r s  such as  u l t r a  high vac- 

uum, r ad ia t ion ,  and temperature extremes. Each of t hese  f ac to r s  has 

i t s  own pecul ia r  e f f ec t  on each type of lubr icant .  Under a l l  condi- 

t i o n s  of operation, t he  e l e c t r i c a l  contact lubr icant  must not i n t e r f e r e  

with t h e  e l e c t r i c a l  conduction across t h e  contact i n t e r f ace .  This re- 

quires  that  t h e  lubr icant  be a fair e l e c t r i c a l  conductor and remain 

s t a b l e  regardless  of t h e  type,  magnitude, o r  durat ion of any environ- 

mental f ac to r s  which may be encountered. 

All of t h i s  must be accomplished 

I n  ac tua l  space applications , t h e  problem of lub r i ca t ion  

The s l i d i n g  e l e c t r i c a l  contacts present ly  used i n  vacuum environ- 

ments a re  generally adaptations of un i t s  used f o r  a i r c r a f t  applica- 

t i o n s .  

a l loys  and are e l e c t r i c a l l y  insulated by organic d i e l e c t r i c s .  

operated under conditions of high vacuum, these u n i t s  have a shbr t  

usefu l  l i f e  because of t h e  absence of surface films. Additional 

problems occur because of d i e l ec t r i c  outgassing and generation of 

f r i c t i o n  polymers which occur because of t h e  c a t a l y t i c  ac t ion  of t h e  

noble metal surfaces .  These polymers would be bene f i c i a l  as lubr i -  

can ts ,  except f o r  t h e  f a c t  t ha t  they a re  e l e c t r i c a l l y  in su la t ing  and 

therefore  have an adverse e f f e c t  on t h e  e l e c t r i c a l  operation of the 

s l i d i n g  contact .  

They are usual ly  fabr icated from the  noble metals or  t h e i r  

h e n  
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The s e l e c t i o n  of lubricants  for  vacuum s l i d i n g  e l e c t r i c a l  con- 

t a c t s  has followed much the  same pat tern as t h e  s e l e c t i o n  of the  con- 

t a c t  materials, t h a t  i s ,  t o  employ lubricants  which work wel l  i n  t h e  

e a r t h ' s  atmosphere o r  the  few lubricants which a r e  known t o  work wel l  

i n  a vacuum environment. 

use of graphi te ,  molybdenum disulf ide (MOS~),  high a l t i t u d e  brush mate- 

r ials,  and c e r t a i n  organic lubricants .  

notable exception of MoS2 f a i l  t o  provide adequate lubr ica t ion  unless 

elaborate  precautions are taken t o  maintain an a r t i f i c i a l  atmosphere 

around the  s l i d i n g  e l e c t r i c a l  contact. 

lubr icant  i n  vacuum, possesses a ra ther  high bulk r e s i s t i v i t y  which can 

cause excessive losses  across a s l id ing  contact lubr ica ted  with t h i s  

mater ia l  

Notable examples of t h i s  approach are the  

A l l  of these  materials, with the  

MoS2, although an excel lent  

One group of mater ia ls ,  the  "Heavy Metal Derivatives" as they are 

generally known, have recent ly  received some a t ten t ion  as posszble 

lubr icants  for vacuum s l i d i n g  e l e c t r i c a l  contacts because they possess 

a des i rab le  combination of properties i n  ( 2 ) .  These propert ies  

are: 

Certain compounds i n  t h i s  group, notably niobium diselenide (NbSe2), 

have been shown t o  be good lubricants for s l i d i n g  e l e c t r i c a l  contact 

operation i n  a vacuum ( 3 ) .  

(1) a laminar c r y s t a l  s t ruc ture  and ( 2 )  a low bulk r e s i s t i v i t y .  

Other materials, such as te f lon  and polyimide (4, 5)  a l s o  are 

good vacuum lubricants  These materials are  e l e c t r i c a l  insu la tors ,  but 

they can be made e l e c t r i c a l l y  conductive by adding a meta l l ic  component. 

Nevertheless, t h e  use of these materials i n  a s l i d i n g  e l e c t r i c a l  contact 
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system can r e s u l t  i n  the  buildup of an insu la t ing  f i lm on the  surface 

of t h e  contact.  I f  t h e  voltage across the  f i lm is i n s u f f i c i e n t  t o  

puncture t h e  f i l m  and es tab l i sh  metal l ic  contact,  the s l i d i n g  contact,  

although showing low wear and low f r i c t i o n ,  would be useless because of 

excessive contact res is tance.  

The f r i c t i o n  and wear problems encountered i n  t h e  operation of 

s l i d i n g  e l e c t r i c a l  contacts i n  a vacuum a r e  not unlike those which 

occur i n  t h e  operation of any other s l i d i n g  system under t h e  same 

conditions. The same materials concepts developed by f r i c t i o n  and 

wear experiments apply equally t o  s l id ing  e l e c t r i c a l  contacts.  How- 

ever,  these concepts must be modified t o  account f o r  the  e l e c t r i c a l  

propert ies .  

Additional problems a r e  created by e l e c t r i c a l  s l id ing  systems 

because of t h e  flow of e l e c t r i c a l  energy across t h e  in te r face .  

I d e a l l y ,  the  s l i d i n g  e l e c t r i c a l  contact should behave as i f  it were not  

i n  t h e  c i r c u i t .  I n  the  p r a c t i c a l  case, t h e  s l i d i n g  e l e c t r i c a l  contact 

does influence the operation of a c i r c u i t  and t h i s  influence creates  

another c r i t e r i o n ,  e l e c t r i c a l  noise,  which must be evaluated together  

with t h e  f r i c t i o n  and wear properties of t h e  s l i d i n g  e l e c t r i c a l  contact.  

These three  f a c t o r s ,  f r i c t i o n ,  wear, and electr ical .  noise w i l l  govern 

t h e  usefu l  l i f e  of a contact system. Any one of these  may take preced- 

ence over t h e  others ,  depending upon t h e  p a r t i c u l a r  appl icat ion of the  

contact system. 

Rolling element bearings have a l so  been used as e l e c t r i c a l  s l i p  

r ings p a r t i c u l a r l y  i n  r o t a t i n g  anode X-ray tubes,  ( 6 ,  7 ) .  
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However , t h e  lub r i ca t ion  requirements a re  somewhat more severe 

because the  bearings are  usual ly  required t o  support a load. 

t h e l e s s ,  they have t h e  advantage of mult iple  contact areas  between the  

balls and races .  This fea ture  could possibly reduce e l e c t r i c a l  noise  

b4cause of t h e  grea te r  probabl i ty  of maintaining continuous e l e c t r i c a l  

conduction across t h e  bearing. 

Never- 

A disadvantage of using r o l l i n g  element s l i p  r ings i s  t h e  addi- 

t i o n a l  wear (corrosive wear and p i t t i n g )  of t he  bearing elements caused 

by an e l e c t r i c a l  current flowing through the  bearing (‘8). 
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EXPERIMENTAL RESULTS - A SURVEY OF THE FIELD 

Some experimental work has been done i n  t h e  f i e l d  of s l i d i n g  

e l e c t r i c a l  contact l ub r i ca t ion  i n  a vacuum. A comparison of the r e s u l t s  

from the  various experiments i s  d i f f i c u l t  because the  experimental para- 

meters and measurement equipment vary widely. 

perimental r e s u l t s  could have been influenced by such fac tors  as (1) 

t h e  type of pumping system used, ( 2 )  cross contamination among t h e  

various experiments being conducted simultaneously, and ( 3 )  t h e  out- 

gassing of t h e  d i e l e c t r i c  materials used f o r  e l e c t r i c a l  insu la t ion .  

Each of these  fac tors  can have an adverse e f f e c t  on t h e  r e s u l t s  of t h e  

experiments. The various types of contamination generally upgrade the  

f r i c t i o n  and wear performance of materials combinations s l i d i n g  i n  

vacuum, making them appear b e t t e r  than they would be i n  ac tua l  space 

appl icat ions.  It i s  a l so  possible  t h a t  inadvertant contamination would 

degrade the  e l e c t r i c a l  performance. 

a r e  usefu l  because ce r t a in  f a c t s  are apparent regardless  of t h e  ex- 

perimental  setup used. 

I n  many cases,  t h e  ex- 

Nevertheless, these  experiments 

Most of t h e  experiments i n  vacuum were concerned only with t h e  

behavior of graphi te  or  MoS2 compacts s l i d ing  against  a f e w  bas ic  con- 

t a c t  mater ia ls .  Recent experiments have included NbSe2. The remaining 

experiments u t i l i z e  low vapor pressure organic f l u i d s  f o r  vapor lub r i -  

ca t ion  of precious metal a l loy  s l id ing  e l e c t r i c a l  contacts i n  vacuum. 
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Graphite - High Alti tude Brush Wear 

Problems i n  t h e  operation of s l i d ing  e l e c t r i c a l  c m t a c t s  a t  reduced 

environmental pressures probably began with t h e  phenomena of high a l t i t u d e  

brush wear on e l e c t r i c a l  machines aboard a i r c r a f t  which flew above 20 000 f t  

during World War 11. 

w a s  thought t o  be inherent i n  i t s  c r y s t a l  s t ruc ture .  

i n t o  t h e  high a l t i t u d e  brush problem revealed t h a t  a small amount of water 

vapor must be present i n  t h e  surrounding atmosphere t o  promote t h e  lub r i -  

ca t ing  a b i l i t y  of graphite. 

Unt i l  t h i s  time, t h e  lub r i ca t ing  a b i l i t y  of graphi te  

Invest igat ions ( 9 )  

The first p r a c t i c a l  so lu t ion  t o  the high a l t i t u d e  brush problem was 

the  addi t ion of meta l l ic  hal ides  (notably barium f luor ide ,  BaF2) t o  the  

brush mater ia l  (10). 

depended on a time-consuming pre-filming procedure. 

d i f f i c u l t y ,  d i l u t e  and concentrated molybdenum d i su l f ide  (MoS ) and li thium 

carbonate impregnated brush materials have been developed which provide i m -  

mediate high a l t i t u d e  protect ion (11). 

have a l s o  been t r i e d  ( 1 2 ) .  

are shown i n  Tables 1 and 2. Recently, a l t i t u d e  protect ion has been 

s l i g h t l y  increased and the  contact voltage drop reduced by p la t ing  s l i p  

r ings  with rhodium (11). Certain organic vapors have a l s o  been found t o  

decrease t h e  wear r a t e  of graphite i n  a reduced pressure environment t o  i t s  

normal atmospheric values (13,14). 

I n  t h e  high vacuum range 

However, the successful use of BaFZ t r ea t ed  brushes 

To surmount t h i s  

2 

Other adjuvants and r ing  mater ia ls  

Some of  these mater ia ls  and t h e i r  performance 

t o r r ) ,  BaF2 w a s  not e f f ec t ive  i n  

preventing excessive wear of a 20$ graphite-carbon specimen s l i d i n g  
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agains t  e l e c t r o l y t i c  s i l v e r  (15). 

10-2 t o  10-3 t o r r  range. 

BaFZ w a s ,  however, e f f e c t i v e  i n  t h e  

The b e s t  wear results i n  high vacuum, using a loo$ e lec t rographi t ized  

carbon s l i d i n g  aga ins t  various materials, were obtained when a t r a n s f e r  

f i l m  of carbon w a s  present on t h e  mating surface (15). However, t r a n s f e r  

f i l m s  were absent on r e l a t i v e l y  oxide free materials (e .g . ,  s i l v e r  and 

gold).  

achieved by chemisorption of t h e  carbon t o  t h e  oxygen of t h e  meta l l ic  

oxide. 

adjuvant was a l s o  a t t r i b u t e d  t o  t h e  absence of surface oxides (15). 

From these  r e su l t s ,  it was theorized that t h e  t r a n s f e r  f i l m  w a s  

These r e s u l t s  a r e  presented i n  Fig. 1. The f a i l u r e  of t h e  BaFZ 

The f a i l u r e  of graphi te  t o  lubricate  has a l s o  been a t t r i b u t e d  t o  
- 

i ts  poor adherance (16), and it was believed here a l s o  t h a t  t he  presence 

of surface oxides improved t h e  adherance. 

Some support f o r  t he  surface oxide hypothesis has been offered by 

t h e  ana lys i s  of normal commutator films generated by a graphi te  brush 

running against  a copper commutator (17,18). 

Other experimental r e s u l t s  (19)  indicated a r e l a t ionsh ip  between 

t h e  wear r a t e  of graphite and the  formation and destruct ion of surface 

oxides. It w a s  subsequently found t h a t  any var iab le  which a f fec ted  

t h e  thickness  of t he  oxide f i l m ,  a f fected t h e  rate of wear of t h e  

graphi te  brush. 

is achieved when a balance i s  obtained between surface oxide f i l m  

formation and destruct ion.  

t h i s  balance are presented i n  Fig. 2. 

The optimum operation of a copper-graphite contact 

Some of the important var iab les  which o f f s e t  
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Severe graphi te  brush wear has a l so  occurred i n  t o t a l l y  enclosed 

machines where s i l i cone  insu la t ion  was employed. 

s a t i s f a c t o r y  low humidity operation, a l s o  displayed excessive wear i n  

atmospheres containing s i l icones .  One explanation suggested t h a t  t he  

hydrophobic s i l i c o n e  vapor was adsorbed on t h e  surface of t h e  graphi te  

and prevented the  normal ac t ion  o f  water vapor. Others (20)  a t t r i b u t e d  

t h e  excessive brush wear t o  t h e  formation of abrasive oxides of s i l i c o n e  

by oxidation of s i l i cone  vapor i n  the contact areas .  

Brushes, t r e a t e d  f o r  

Compacts 

It is  general ly  f e l t  t h a t  a continuous supply of lubr icant  is neces- 

sa ry  t o  obtain a long useful l i f e  for  s l i d i n g  e l e c t r i c a l  contacts  which 

must operate i n  a clean high vacuum environment. 

manifested i t s e l f  i n  t h e  form of compacts which contain two components: 

(1) a lub r i ca t ing  component and ( 2 )  a component which has a high e lec-  

t r i c a l  conductivity.  

This approach has 

Three compacts of t h i s  type w i l l  be discussed. 

Graphite compacts. - At tempts  t o  improve t h e  e l e c t r i c a l  conductivity 

and hea t  conduction cha rac t e r i s t i c s  of graphi te  and ye t  re ta in  i ts  

lub r i ca t ing  cha rac t e r i s t i c s  i n  air ,  have resu l ted  i n  a number of usefu l  

metal impregnated graphi te  mater ia ls .  Among these mater ia ls  is  t h e  

familiar s i l v e r  impregnated graphi te  brush cons is t ing  of about 80% s i l v e r  

and 20% carbon. 

Experiments using s i lver-graphi te  brushes running aga ins t  r i n g  

materials of pure s i l v e r ,  pure copper, e lec t ropla ted  s i l v e r ,  e l ec t ro -  

plated gold, and rhodium plated gold i n  clean high vacuum environments, 
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. 

have led t o  very disappointing results (21-23).  

wear r a t e s  were extremely high and contact r e s i s t ance  f lpc tua t ions  

reached in to l e rab le  l eve l s  i n  very shor t  periods of time. This be- 

havior seems t o  be independent of the r i n g  material used. 

I n  a l l  cases, brush 

Molybdenum d i su l f ide  compacts. - Unlike graphite,  MoSZ is an 

e f f e c t i v e  lubr icant  i n  vacuum and it was n a t u r a l  t o  consider i t s  

p o s s i b i l i t i e s  as a lubr icant  f o r  vacuum s l i d i n g  e l e c t r i c a l  contact 

appl icat ions.  

compacts which are fabricated i n t o  e l e c t r i c a l  brushes. 

(21,24) have shown t h a t  MoS2 contents of not  less than 10% were 

required f o r  low brush wear. 

not t h e  coe f f i c i en t  of f r i c t i o n ,  i s  g r e a t l y  influenced by the  amount of  

MoS2 i n  these compacts. 

MoSZ general ly  appears i n  the form of silver-MoS2 

Experiments 

Fig. 3 shows tha t  the rate of wear, bu t  

The 88$ s i l v e r  - 12% M0S2 compacts have enjoyed some success i n  

Noise l eve l s  and wear r a t e s  have high vacuum experiments (3 ,21 ,22) .  

been very low when compared t o  corresponding graphi te  compacts running 

aga ins t  t he  same mater ia ls  under the same conditions.  B e s t  r e s u l t s  

were obtained using s i l v e r  or rhodium pla ted  s i l v e r  as r i n g  mater ia ls  

(22). The performance of copper as a r i n g  material was somewhat poor. 

Small percentages of copper and molybdenum have been added t o  the 

s i l v e r  - MoSZ compositions i n  attempts t o  improve t h e i r  wear charac- 

t e r i s t i c s  ( 2 1 ) .  

about 2 . 5  weight percent whereas additions of molybdenum resu l ted  

i n  very poor performance. A silver-copper-MoS brush mater ia l  has been 

Optimum values of copper content appeared t o  be 

2 
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used t o  carry high currents  (300. A/in.2)  i n  a vacuum of 10-9 t o r r  (25) .  

It has been observed t h a t  MoS2 lubr ica ted  systems were more 

e l e c t r i c a l l y  noisy i n  a i r  than i n  vacuum (22,261. 

t h i s  observation, it i s  in t e re s t ing  t o  note t h a t  t h e  lub r i ca t ing  q u a l i t i e s  

of MoS2 a re  impaired by atmospheric moisture (251, and t h a t  t h e  f r i c t i o n  

of materials lubr ica ted  with MoS2 is higher i n  a i r  than i n  vacuum. 

I n  connection with 

Objections t o  t h e  use of MoS2 as  an e l e c t r i c  contact lubr icant  

revolve around t h e  f a c t  t h a t ,  i n  bulk form, it i s  a semi-conductor of 

r a t h e r  high e l e c t r i c a l  r e s i s t i v i t y  (850 ohm-cm) which can cause s igna l  

d i s t o r t i o n  and excessive losses  across t h e  contact .  Other undesirable 

e f f e c t s  of MoS2 are summarized i n  reference 28. 

Niobium d i se l in ide  compacts. - Another hexagonal l aye r - l a t t i ce  

compound which has given good r e su l t s  as an e l e c t r i c a l  contact lubr icant  

i n  vacuum i s  niobium d i se l in ide  (NbSe2). One very des i rab le  property 

of t h i s  compound i s  i t s  low bulk e l e c t r i c a l  r e s i s t i v i t y  ( 5 x 1 0 4  ohm- 

cm) which i s  comparable t o  t h a t  of graphite.  

Inves t iga t ions  using NbSe2 as a lubr icant  f o r  s l i d i n g  e l e c t r i c a l  

contacts have been performed i n  vacuum ( 3 ) .  

compact containing 85% s i l v e r  and 15% NbSe2, which ran against  a coin 

si lver s l i p  r ing  at an extremely s l o w  speed (0.43 rev.  /h r ) .  

NbSe2 was u t i l i z e d  i n  a 

T e s t  r e s u l t s  indicated t h a t  the NbSe2 compacts operated with 

approximately half  t h e  contact voltage drop of equivalent MoS2 compacts. 

These da ta  a l so  show t h a t  t he  voltage drop was more s t ab le .  However, 

t h e  wear was somewhat grea te r  with the NbSe2 compacts when compared t o  

t h e i r  MoS2 equivalents.  A comparison of t he  performance of MoS2 and 
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NbSe run under t h e  same conditions i s  presented i n  Table 3. 2 

Rolling Element S l i p  Rings 

Lubrication by meta l l ic  films. - Rolling element bearings employed 

as s l i p  r ings,  have been used successfully,  p a r t i c u l a r l y  i n  r o t a t i n g  

anode X-ray tubes.  

power dens i t ies ,  impose severe demands on the  bear ing materials and 

lubr icant .  X-ray tube bearings must operate under conditions of high 

vacuum 

t o  10 000 rpm), and car ry  anode currents up t o  1 ampere ( 7 ) .  

Modern r o t a t i n g  anode X-ray tubes,  operating a t  high 

t o  t o r r ) ,  high temperature (600 C ) ,  high speed (3  000 

For one pa r t i cu la r  X-ray tube application, t h e  b a l l s  and races  were 

fabr ica ted  from a tungsten-chromium-cobalt t o o l  steel. These bearings 

have a f u l l  complement of b a l l s  and the  lubr icant  is  a s i l v e r  f i l m  ap- 

p l ied  t o  the  b a l l s  only ( 7 ) .  

hours. 

of 10 000 hours ( 2 9 ) .  

Useful lifetimes are from 1 0 0 0  t o  10 000 

A t  room temperature, bear ing lifetimes are sa id  t o  be i n  excess 

Barium f i l m s  have a l s o  successfully lubricated t o o l  s teel  bearings 

i n  which cobalt  or chromium was present is a quant i ty  grea te r  than a 

c e r t a i n  minimum amount ( 6 ) .  

ment, w e r e  a l s o  successful ly  lubricated with barium f i l m s  provided a 

layer  of chromiwn was first  vaporized onto t h e  b a l l s .  

of t hese  experiments, it w a s  concluded t h a t  f o r  good wear cha rac t e r i s t i c s ,  

t h e  intermediate f i l m  should a l l o y  with t h e  base material .  

Bearing materials no t  meeting t h i s  require-  

From t h e  r e s u l t s  

A mixture of 80$ barium and 20$ chromium has been used t o  lub r i ca t e  

small (3/16 in .  bore)  l i g h t l y  loaded, cobal t  t o o l  s teel  bearings operating 

i n  a vacuum (29) .  By per iodica l ly  re lubr ica t ing  t h e  bearings, extended 
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bearing lifetimes have been obtained. 

Lubrication by molybdenum disulf ide.  - Molybdenum d i s u l f i d e  has been 

used f o r  t h e  lubr ica t ion  of r o l l i n g  element bearings used as s l i p  r ings  

i n  a clean high vacuum environment (26) .  The b e s t  performance, a t  a 

test current  of 10 ma.,  w a s  obtained with bear ing b a l l s  and races  of 

440-C s t a i n l e s s  steel  and a machined r e t a i n e r  fabr ica ted  from a compact 

containing 85% gold and 15% MoS2. 

were general ly  observed when using M0S2 as a lubricant .  

showed t h a t  MoS2 f i l m s  seemed t o  be more e l e c t r i c a l l y  noisy i n  a i r  than 

i n  vacuum (26) .  

No i se  values of from 2 t o  4 milliohms 

Observation 

Lubrication by composites containing d i e l e c t r i c  materials.  - One 

experiment (26)  using 440-C stainless s teel  b a l l s  and races  ran very 

wel l  mechanically but  displayed a very high e l e c t r i c a l  noise  level. 

An i n i t i a l  contact res i s tance  of 1 ohm increased t o  an open c i r c u i t  

a f t e r  a 1-hour operation i n  a i r .  Subsequent operation i n  vacuum showed 

t h a t  t h e  contact res i s tance  dropped t o  a value of from 15 t o  25 ohms 

( q u i t e  high i n  comparison t o  any of the mater ia ls  used i n  vacuum, so  fa r ) .  

These da ta  ind ica te  t h a t  a good vacuum lubr icant  which is  a l s o  a good 

e l e c t r i c a l  insu la tor  cannot be successfully used for low noise e l e c t r i c a l  

contact  operation because of the buildup of an in su la t ing  f i l m .  

Organic Vapor Lubrication 

Organic lubr icants  a r e  extremely usefu l  materials when used within 

t h e i r  l imi ta t ions .  

ature. 

They are ef fec t ive  only i n  a narrow range of temper- 

They a r e  degraded by exposure t o  rad ia t ion ,  and they have rela- 

t i v e l y  high vapor pressures.  I n  p rac t i ca l  appl icat ions,  the  use of 
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organic lubr icants  i n  a vacuum environment would requi re  an enclosure t o  

prevent excessive evaporation and rapid l o s s  of t h e  lubr icant .  

sure  would a l s o  serve t o  maintain a lubricant  atmosphere around t h e  contact 

configuration. If t h e  e l e c t r i c a l  contact requires  ro ta t ion ,  seals would 

be needed. 

The enclo- 

This would add undesirable addi t iona l  weight t o  t h e  device. 

These high vapor pressure materials can a l s o  be a source of t rouble  

because of t he  p o s s i b i l i t y  of escaping vapors from t h e  enclosure and con- 

sequent condensation on nearby surfaces. The escape of these  vapors from 

t h e  enclosure could be pa r t i cu la r ly  troublesome if condensation occurred 

on o p t i c a l  devices (such as mir rors  o r  l enses)  which were operating i n  

t h e  v i c in i ty .  

Organic vapor lubr ica t ion  of s l i d ing  e l e c t r i c a l  contacts a l s o  seems 

undesirable from another aspect.  Experiments (30-32) involving the  s l i d i n g  

of some of t h e  noble metals (gold, platinum, and palladium) and s i l v e r  

have shown t h a t  amorphous, polymeric substances a r e  formed on t h e  surfaces  

of these  metals. Materials other than t h e  noble metals a l s o  formed s ig -  

n i f i c a n t  amounts of these  polymeric materials (30). 

The process of s l i d i n g  does not seem t o  be required, s ince  it has 

The sub- been shown t h a t  these  mater ia ls  can form spontaneously ( 3 2 ) .  

s tances  necessary f o r  t h e  i n i t i a t i o n  of these  polymeric materials under 

s t a t i c  conditions was supplied by t h e  outgassing of t h e  organic d ie lec-  

t r ics  employed f o r  e l e c t r i c a l  insulat ion i n  enclosed contact systems ( 3 2 ) .  

Recent experiments seem t o  indicate t h a t  an adsorbed surface f i l m  

is  necessary f o r  polymer formation (31). It has been thought t h a t  oxygen 
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a l s o  enters i n t o  t h e  react ions (31). 

a r e  required f o r  polymer formation, the behavior of organic lubr icants ,  

i n  vacuum, might be qu i t e  d i f f e ren t  from t h e i r  behavior i n  a i r .  

If adsorbed surface f i l m s  and oxygen 

Organic f l u i d  vapors have been used fo r  t h e  lubr ica t ion  of precious 

metal s l i p  r ings  operating under vacuum (33). 

precious metal a l l o y  wires running i n  V-grooves of hard gold p la ted  s i l v e r  

which were lubr ica ted  by low vapor pressure fluids.  

gave t h e  b e s t  performance. 

These experiments gave up t o  79 days o f  r e l a t i v e l y  noiseless  operation. 

A non-halogenated s i l i cone  o i l  has a l s o  been successful ly  used f o r  

These experiments employed 

A synthe t ic  e s t e r  

A hydrocarbon o i l  gave the  poorest performance. 

t he  lubr ica t ion  of precious metal s l i p  r ings  i n  vacuum (34) .  

A l i s t i n g  of t h e  major r e s u l t s  of t h e  vacuum s l i d i n g  e l e c t r i c a l  con- 

t a c t  experiments is  shown i n  Tables 4 and 5. 

Consideration of  Thin Films a s  Lubricants f o r  S l id ing  

E l e c t r i c a l  Contacts i n  Vacuum 

Sol id  t h i n  f i l m  lubr ica t ion  is seen as a most l i k e l y  method f o r  t h e  

lubr ica t ion  of s l i d i n g  e l e c t r i c a l  contacts i n  a space environment. Some 

a t t e n t i o n  must be given, therefore ,  t o  t h e  possible behavior of t h i n  

f i l m s  under these  conditions. 

I n  a space environment, t h i n  films may be r ap id ly  removed by evapo- 

r a t i o n  i n  addi t ion  t o  being worn away. Therefore, ser ious consideration 

must be given t o  t h e  evaporation r a t e s  of t he  f i l m  materials. 

film of a l loys  a r e  considered f o r  lubricat ion,  s e l ec t ive  evaporation 

If t h i n  
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of t h e  components of t h e  a l l o y  may take place (Raoult 's  l a w ,  35). 

f ac to r s  can s i g n i f i c a n t l y  shorten t h e  usefu l  lifetime of a t h i n  f i l m  

lubr  i cant.  

These 

Presently,  so l id ,  t h i n  f i l m  lubr ica t ion  (as deposited surface f i l m s )  

s u f f e r  one ser ious disadvantage. The lubr icant  f i l m s  general ly  have a 

f i n i t e  l i f e .  

f i l m  is  worn through i n  the  contact area, i t s  use fu l  l i f e  is ended. 

This type of lubr ica t ing  is not self-heal ing.  When t h e  

Thin Films of Soft Metals 

Sof t  metals with low shear strengths can be used as lubr icants  f o r  

s l i d i n g  e l e c t r i c a l  contacts  which must operate under conditions of ul t ra-  

high vacuum. Metal l ic  films are inherent ly  good e l e c t r i c a l  conductors. 

Many of these metals have acceptably low vapor pressures, even a t  high 

temperatures, and they  w i l l  maintain t h e i r  physical  and e l e c t r i c a l  in-  

t e g r i t y  when exposed t o  t h e  various types of r ad ia t ion  (29 ) .  

For these s o f t  meta l l ic  t h i n  films t o  funct ion e f f ec t ive ly  as 

lubr icants ,  t he  area of contact must be kept small. Experiments, in- 

volving t h i n  meta l l ic  f i l m s  a s  lubricants  on hard subs t ra tes  show, 

generally,  t h a t  t h e  coef f ic ien t  of f r i c t i o n  is  a minimum when t h e  f i l m  

thickness  is i n  t h e  order of 2500 

t e r i s t i c  of t h i n  f i l m  metal l ic  lubricants  i s  t h e  decrease i n  coef f ic ien t  

of f r i c t i o n  displayed as t h e  applied load is increased (1). 

(1). Another i n t e r e s t i n g  charac- 

One of t h e  major problems encountered i n  t h e  appl ica t ion  of t h i n  

f i l m s  as lubr icants  is t h a t  of adherance or bonding of t h e  meta l l ic  
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f i l m  t o  t h e  base material. 

f i l m  lubr icant  is  tha t  t h e  f i l m  be firmly bonded t o  t h e  base material. 

An e s sen t i a l  requirement f o r  an enduring t h i n  

Poor f i l m  adherance manifests i t s e l f  in a very shor t  usefu l  l i f e  a s  a 

lubr icant ,  I n  many cases, t h e  f i l m  i s  ruptured the i n s t a n t  s l i d i n g  begins. 

Several  methods are present ly  avai lable  f o r  deposi t ing t h i n  f i l m s  of 

various mater ia ls  on a va r i e ty  of base materials. These methods permit 

c lose cont ro l  of t he  f i l m  thickness and crea te  films which are f i rmly 

bonded t o  the base materials. 

Thin f i l m  formation by vacuum vapor deposit ion.  - The vacuum vapor 

deposi t ion experiments (36) descr ibe a process whereby gold films i n  t h e  

order of 1800 th i ck  were deposited on a nickel-lOQ chromium a l l o y  base 

mater ia l .  Pr ior  t o  t h e  deposit ion of the  f i l m ,  t h e  base mater ia l  was 

cleaned and etched i n  high vacuumby means of an e lec t ron  gun. The gold 

was then evaporated from a f i l amen t  type source and onto t h e  s t i l l  hot 

base material. 

F r i c t ion  experiments, i n  vacuum (lo-‘’ t o r r )  using t h i s  gold f i l m  as 

a lubr icant  and niobium as the  mating surface,  showed that t h e  coe f f i c i en t  

of f r i c t i o n  w a s  r e l a t i v e l y  low (0.3) and remained near t h i s  value f o r  an 

extended period of time. An explanation f o r  t h i s  r e s u l t  was based on t h e  

f a c t  t h a t  t h e  high temperature of t h e  base material and some mutual 

s o l u b i l i t y  had formed a diffused region between t h e  gold f i l m  and t h e  

base material which resu l ted  i n  an excel lent  bond. 

Thin f i l m  formation by ion plating;. - The deposit ion of a f i l m  on a 

base material may a l s o  be achieved by ion p la t ing  (37,38) .  I n  t h i s  
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method, t h e  metal ions,  because of t h e i r  l a rge  k i n e t i c  energy, derived 

from t h e  e l e c t r i c  f i e l d ,  a l s o  form a d i f fused  region much l i k e  t h e  

vacuum vapor deposit ion process described previously. 

tages  of t h i s  method are :  

plated without revolving t h e  base material  r e l a t i v e  t o  t h e  evaporant 

source, and ( 2 )  t h a t  t he  base material  and f i l m  material need not be 

mutually soluble t o  form the diffused region. 

Two major advan- 

(1) that curved o r  shadowed surfaces  may be 

The f i l m  deposited by t h i s  method is  somewhat superior  t o  the f i l m  

A f r i c t i o n  experiment deposited by t h e  vacuum vapor deposition method. 

i n  vacuum (lo-” t o r r )  (35) using an ion plated gold f i l m  1500 

on a nickel-lO$ chromium base material  and niobium as t h e  mating surface 

showed t h a t  t h e  coe f f i c i en t  of f r i c t i o n  w a s  about 0.2 and had a grea te r  

lifetime than the f i l m  deposited by  the previous method. 

t h i ck  

A comparison of t he  coef f ic ien t  of f r i c t i o n  and useful lifetimes 

of these  gold f i l m s  is  shown i n  Fig. 4. 

Thin Film Formation of Compounds by Ion  Sput ter ing 

The processes of vacuum vapor deposition and ion p l a t ing  s u f f e r  one 

l imi ta t ion .  

t o  t h e  point of evaporation or sublimation. 

r ia l  must r e t a i n  i ts  molecular i n t eg r i ty  throughout t h e  process if the  

f i l m  on the  base mater ia l  is  t o  have t h e  same composition as t h a t  of the  

parent material, 

perature  required f o r  evaporation or sublimation, cannot be employed i n  

these  processes. Another recent  technique, ion sput ter ing,  does not 

requi re  primary heat ing of the  f i l m  material, and hence, it i s  not  subject  

I n  both of these processes, t he  f i l m  material must be heated 

Furthermore, t h e  f i l m  mate- 

Compounds, which dissociate  before  reaching t h e  tem- 
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t o  t h e  l imi ta t ions  described above (39). 

I n  t h i s  process,  t he  films a re  produced by pos i t ive  ion  bombard- 

ment of a negatively charged quantity of f i lm material. 

results i n  a physical  knocking of f  of surface atoms (sput te r ing)  of 

t h e  f i lm  material which i s  then deposited on a base mater ia l  i n  c lose 

proximity t o  t h e  f i lm material. The p l a t ing  of curved surfaces w i l l  

r equi re  ro t a t ion  of t he  base mater ia l  r e l a t i v e  t o  t h e  f i lm mater ia l .  

This act ion 

The ion  sput te r ing  process i s  extremely v e r s a t i l e  and i s  reported 

as being capable of deposit ing "anything on anything." 

opens up a vas t  new f i e l d  of p o s s i b i l i t i e s  because it enables deposit ion 

of materials, as t h i n  films, which were impossible t o  deposit  by conven- 

t i o n a l  methods. 

semiconducting -compounds, and al loys.  Insu la t ing  mater ia ls  , however, 

requi re  the  use of a rad io  frequency power source,  but nevertheless ,  

these  materials can be successful ly  sput tered 140) ' Furthermore , 

t h e  r e f r ac to ry  metals ( tungsten,  rhenium, tantalum, and molybdenum) can 

be sput te red  with ease. However, t h e  sput te r ing  r a t e s  f o r  a l l  of these  

materials vary widely. 

This process 

Some of these  materials include g l a s s ,  ceramics , p l a s t i c s  , 

Recent experiments i n  the f r i c t i o n  and wear f i e l d  (41),demon- 

s t r a t e d  t h a t  t h e  process of ion  sput ter ing can be successful ly  employed 

f o r  t h e  deposit ion of t h i n  fi lms of MoS2. F r i c t ion  experiments i n  vacuum 

t o r r )  showed t h a t  an i on  sput tered t h i n  film of MoS2 (2000 t o  
0 

3000'A t h i ck )  deposited on a niohiumbase material and s l i d  against  a 

mating surface a l so  of nLob'ium had a coef f ic ien t  of f r i c t i o n  of about 

0.09. This value i s  generally cha rac t e r i s t i c  of bonded MoS2 films. 
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The experiment ran w i t h  low f r i c t i o n  f o r  5 hours. 

w a s  terminated a t  t h e  end of 5 hours, t h e  MoSZ f i l m  s t i l l  had not f a i l e d .  

This remarkable endurance l i f e  is again c h a r a c t e r i s t i c  of the  exce l len t  

adhesion of t h e  f i l m  mater ia l  t o  the subs t r a t e  material and demonstrates 

that t h i n  f i l m s  can funct ion successfully as lubr icants  f o r  an extended 

period of time. 

When the experiment 

CONCLUSIONS 

The review of the literature, involving s l i d i n g  e l e c t r i c a l  contacts  

i n  a vacuum, shows t h a t  lubr ica t ion  o f  s l i d i n g  e l e c t r i c a l  contacts  i s  

necessary i f  these contacts  are t o  operate w i t h  a low e l e c t r i c a l  noise  

l e v e l  f o r  an extended period of t ime .  

made on the  basis of the experiments reviewed: 

The following conclusions are 

1. Graphite is  not  a good s l id ing  e l e c t r i c a l  contact lubr icant  under 

high vacuum conditions where surface contamination i s  very low and there- 

fo re  cannot be considered usefu l  for t h e  lubr ica t ion  of low noise e lec-  

t r i c a l  contacts which operate i n  vacuum. 

2.  Molybdenum d i su l f ide  is  a good s l i d i n g  e l e c t r i c a l  contact l ub r i -  

cant i n  vacuum and t h e  12$ MoS2 - 88$ s i l v e r  compacts give acceptable 

performance when run against  silver s l i p  r ings.  

t h e  use of MoSZ compacts a re  the  high r e s i s t i v i t y  and semi-conducting 

cha rac t e r i s t i c s  of t h e  MoS2 component. 

"he major objections t o  

3. Niobium a ise len ide  is  another good s l i d i n g  e l e c t r i c a l  contact 

l ub r i can t  i n  vacuum and has the s ign i f i can t  advantage of having a much 

lower bulk r e s i s t i v i t y  than MoSz. 

run aga ins t  coin s i l v e r  s l i p  r ings  display lower e l e c t r i c a l  noise leve ls  

than the  equivalent MoSZ compacts although the  wear is grea te r .  

The 12% NbSe2-8846 s i l v e r  compacts when 
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4. Organic vapor lubr ica t ion  of precious metal s l i d i n g  e l e c t r i c a l  

contacts  i n  a semi-closed system a t  r e l a t i v e l y  low pressure has resu l ted  

i n  very long usefu l  l ives  and low noise leve ls .  

formation of i n su la t ing  deposi ts  of f r i c t i o n  polymer, with t h i s  combina- 

t i o n  of mater ia ls  (organic lubricants  and precious metals), and the  low 

r ad ia t ion  tolerance of these organic mater ia ls  make t h e i r  accep tab i l i t y  

f o r  extended space appl icat ions questionable. 

The p o s s i b i l i t y  of t h e  

5. Die lec t r ic  lubr icant  materials would not  be acceptable a s  an 

e l e c t r i c a l  contact lubr icant  i n  vacuum because of excessive e l e c t r i c a l  

noise due t o  t h e  buildup of an insulat ing f i l m  between the  conducting 

surfaces. 

6. Thin meta l l ic  f i l m s  have been used successfu l ly  a s  r o l l i n g  

element e l e c t r i c a l  contact lubricants  under t h e  extreme conditions 

encountered i n  modern r o t a t i n g  anode X-ray tubes. 

cant f i l m  i s  inherent ly  a good e l e c t r i c a l  conductor and it is  s t a b l e  

i n  vacuum. Furthermore, t he  materials, usua l ly  employed i n  these 

f i l m s  have a r e l a t i v e l y  low vapor pressure a t  high temperatures. 

This type of l ub r i -  
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Figure 3. - Effect of MoS2 concentration on  wear and friction 
of hot-pressed bearing materials. Sliding speed, 2 540 cmlsec 
(5OOO ft lmin) load, 519 grams; duration of run, 1 hour; 
material: MoSp silver, and 5 percent copper (ref. 24). 
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Figure 4. - Coefficient of friction of niobium sliding on Ni-10 
percent Cr  alloy wi th gold deposited fi lm in vacuum. Sliding 
speed, 2.54 centimeters per second; load, 2% grams; ambient 
temperature (ref. 42). 
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